Mark schemes

Q1.
(a) $\overrightarrow{B E}=\frac{2}{3}$ a or $\overrightarrow{A E}=\frac{5}{3}$ a
oe
B1
$-\mathbf{a}-\overrightarrow{B E}+\mathbf{b}$
or - their $\overrightarrow{A E}+\mathbf{b}$
$-\frac{5}{3} \mathbf{a}+\mathbf{b}$ or $\mathbf{b}-\frac{5}{3} \mathbf{a}$
(b) $\overrightarrow{E F}=\frac{2}{5} \overrightarrow{E D}$

$$
\begin{array}{r}
-\frac{2}{3} \mathbf{a}+\frac{2}{5} \mathbf{b} \\
\text { oe } \\
\\
\text { ft their } \overrightarrow{E D}
\end{array}
$$

Q2.
(a) $2 \mathbf{b}-2 \mathbf{a}$ or $-2 \mathbf{a}+2 \mathbf{b}$ or $2(\mathbf{b}-\mathbf{a})$ or $2(-\mathbf{a}+\mathbf{b})$
(b) Alternative method 1

$$
\begin{aligned}
& M A+A N \\
& \text { or } \frac{1}{2} O A+\frac{1}{2} A B \\
& \text { or } \mathbf{a}+\frac{1}{2} \text { their }(2 \mathbf{b}-2 \mathbf{a}) \\
& \text { oe }
\end{aligned}
$$

$a+b-a$

Alternative method 2
(M is midpoint of $O A$ and N is midpoint of $A B$)

$$
\text { (hence) } M N=\frac{1}{2} O B
$$

$$
M N=\frac{1}{2} \times 2 \mathbf{b}
$$

By midpoint theorem, triangle $A O B$ is an enlargement sf 2 of triangle AMN is M1, A1
(c) Alternative method 1

Common angle MAN
or (Angle) $A M N=$ (Angle) $A O B$ because corresponding
or (Angle) $A N M=$ (Angle) $A B O$ because corresponding
Must be a specific angle shown to be common and if not MAN then reason ie corresponding must be stated
Check diagram if reference to say, x is a common angle'

Sides in ratio $1: 2$
oe eg scale factor 2

Alternative method 2

$$
\begin{aligned}
& \overrightarrow{O B}=2 \overrightarrow{M N} \text { and } \overrightarrow{O A}=2 \overrightarrow{O M} \\
& \text { Any two sides shown to be parallel vectors } \\
& \text { oe eg } \overrightarrow{O B}=2 \mathbf{b}, \overrightarrow{M N}=\mathbf{b} \text { and } \overrightarrow{A B}=2 \mathbf{b}-2 \mathbf{a}, \\
& \overrightarrow{A N}=\mathbf{b}-\mathbf{a}
\end{aligned}
$$

Q3.
Alternative method 1 Shows that $C B$ (or $B C$) is equal and parallel to $D E$ (or $E D$)

$$
\begin{array}{r}
(\overrightarrow{C B}=)-(\mathbf{b}-2 \mathbf{a})-2 \mathbf{b}-\mathbf{a} \\
\text { or }(\overrightarrow{B C}=) \mathbf{b}-2 \mathbf{a}+2 \mathbf{b}+\mathbf{a} \\
\text { oe method }
\end{array}
$$

$$
\begin{aligned}
& (\overrightarrow{C B}=) \mathbf{a}-\mathbf{3} \mathbf{b} \\
& \text { or }(\overrightarrow{B C}=) 3 \mathbf{b}-\mathbf{a} \\
& \quad \text { Must see correct method for } \overrightarrow{C B} \text { or } \overrightarrow{B C}
\end{aligned}
$$

$C B$ is equal and parallel to $D E$

Must see a correct vector for first A1 and have a statement oe e.g. $C B$ is equal and parallel to $E D$

Alternative method 2 Shows that $B E$ (or $E B$) is equal and parallel to $C D$ (or $D C$)

$$
\begin{aligned}
& (\overrightarrow{B E}=) \mathbf{a}+2 \mathbf{b} \\
& \text { or }(\overrightarrow{C D}=)-(\mathbf{b}-2 \mathbf{a})-(\mathbf{a}-3 \mathbf{b}) \\
& \text { or }(\overrightarrow{E B}=)-\mathbf{a}-2 \mathbf{b} \\
& \text { or }(\overrightarrow{D C}=)(\mathbf{a}-3 \mathbf{b})+(\mathbf{b}-2 \mathbf{a}) \\
& \quad \text { oe method }
\end{aligned}
$$

$$
\begin{aligned}
& (\overrightarrow{B E}=) \mathbf{a}+2 \mathbf{b} \\
& \text { and }(\overrightarrow{C D}=) \mathbf{a}+\mathbf{2} \mathbf{b} \\
& \text { or } \\
& (\overrightarrow{E B}=) \mathbf{-}-2 \mathbf{b} \\
& \text { and }(\overrightarrow{D C}=) \mathbf{a}-2 \mathbf{b}
\end{aligned}
$$

Must see correct method for $\overrightarrow{C D}$ or $\overrightarrow{D C}$ oe eg $(\overrightarrow{B E}=) \mathbf{a}+2 \mathbf{b}$ and $(\overrightarrow{D C}=)-\mathbf{a}-\mathbf{2 b}$
$B E$ is equal and parallel to $C D$
Must see two correct vectors for first A1 and have a statement oe e.g. $B E$ is equal and parallel to $D C$

Alternative method 3 Shows that two pairs of opposite sides are parallel

$$
\begin{aligned}
& (\overrightarrow{C B}=)-(\mathbf{b}-2 \mathbf{a})-2 \mathbf{b}-\mathbf{a} \\
& \text { or }(\overrightarrow{B C}=) \mathbf{b}-2 \mathbf{a}+2 \mathbf{b}+\mathbf{a} \\
& \text { or }(\overrightarrow{B E}=) \mathbf{a}+2 \mathbf{b} \\
& \text { or }(\overrightarrow{C D}=)-(\mathbf{b}-2 \mathbf{a})-(\mathbf{a}-3 \mathbf{b}) \\
& \text { or }(\overrightarrow{E B}=)-\mathbf{a}-2 \mathbf{b} \\
& \text { or }(\overrightarrow{D C}=)(\mathbf{a}-3 \mathbf{b})+(\mathbf{b}-2 \mathbf{a}) \\
& \text { oe method }
\end{aligned}
$$

$$
\begin{aligned}
& (\overrightarrow{C B}=) \mathbf{a}-\mathbf{3} \mathbf{b} \\
& \text { or } \\
& (\overrightarrow{B C}=) \mathbf{3} \mathbf{b}-\mathbf{a} \\
& \text { or } \\
& (\overrightarrow{B E}=) \mathbf{a}+\mathbf{2} \mathbf{b} \\
& \text { and }(\overrightarrow{C D}=) \mathbf{a}+\mathbf{2} \mathbf{b} \\
& \text { or }
\end{aligned}
$$

$(\overrightarrow{E B}=) \mathbf{a}-\mathbf{2} \mathbf{b}$
and $(\overrightarrow{D C}=)-\mathbf{a}-2 \mathbf{b}$
Must see correct method for $\overrightarrow{C B}$ or $\overrightarrow{B C}$
or $\overrightarrow{C D}$ or $\overrightarrow{D C}$
oe eg $(\overrightarrow{B E}=) \mathbf{a}+\mathbf{2} \mathbf{b}$ and $(\overrightarrow{D C}=) \mathbf{a}-\mathbf{2} \mathbf{b}$

```
\((\overrightarrow{C B}=) \mathbf{a}-\mathbf{3} \mathbf{b}\)
and \((\overrightarrow{B E}=) \mathbf{a}+\mathbf{2 b}\)
and \((\overrightarrow{C D}=) \mathbf{a}+\mathbf{2} \mathbf{b}\)
and \(C B\) is parallel to \(D E\)
and \(B E\) is parallel to \(C D\)
```

Must see three correct vectors and have two statements oe eg $(\overrightarrow{B C}=) 3 \mathbf{b} \mathbf{- a}$
and $(\overrightarrow{B E}=) \mathbf{a}+\mathbf{2} \mathbf{b}$
and ($\overrightarrow{D C}=$) $-\mathbf{a}-2 \mathbf{b}$
and $B C$ is parallel to $D E$
and $B E$ is parallel to $D C$

Alternative method 4 Shows that two pairs of opposite sides are equal

$$
\begin{aligned}
& (\overrightarrow{C B}=)-(\mathbf{b}-2 \mathbf{a})-2 \mathbf{b}-\mathbf{a} \\
& \text { or }(\overrightarrow{B C}=) \mathbf{b}-2 \mathbf{a}+2 \mathbf{b}+\mathbf{a} \\
& \text { or }(\overrightarrow{B E}=) \mathbf{a}+2 \mathbf{b} \\
& \text { or }(\overrightarrow{C D}=)-(\mathbf{b}-2 \mathbf{a})-(\mathbf{a}-3 \mathbf{b}) \\
& \text { or }(\overrightarrow{E B}=)-\mathbf{a}-2 \mathbf{b} \\
& \text { or }(\overrightarrow{D C}=)(\mathbf{a}-3 \mathbf{b})+(\mathbf{b}-2 \mathbf{a}) \\
& \text { oe }
\end{aligned}
$$

$$
\begin{aligned}
& (\overrightarrow{C B}=) \mathbf{a}-3 \mathbf{b} \\
& \text { or } \\
& (\overrightarrow{B C}=) 3 \mathbf{b}-\mathbf{a} \\
& \text { or } \\
& (\overrightarrow{B E}=) \mathbf{a}+2 \mathbf{b} \\
& \text { and }(\overrightarrow{C D}=) \mathbf{a}+2 \mathbf{b} \\
& \text { or } \\
& (\overrightarrow{E B}=) \mathbf{a}-2 \mathbf{b} \\
& \text { and }(\overrightarrow{D C}=) \mathbf{a}-2 \mathbf{b}
\end{aligned}
$$

Must see correct method for $\overrightarrow{C B}$ or $\overrightarrow{B C}$
or $\overrightarrow{C D}$ or $\overrightarrow{D C}$
oe eg $(\overrightarrow{B E}=) \mathbf{a}+2 \mathbf{b}$ and $(\overrightarrow{D C}=) \mathbf{a}-\mathbf{2} \mathbf{b}$
$(\overrightarrow{C B}=) \mathbf{a}-\mathbf{3} \mathbf{b}$
and $(\overrightarrow{B E}=) \mathbf{a}+\mathbf{2 b}$
and $(\overrightarrow{C D}=) \mathbf{a}+\mathbf{2} \mathbf{b}$
and $C B$ is equal to $D E$ and $B E$ is equal to $C D$

Must see three correct vectors and have two statements oe eg $(\overrightarrow{B C}=) \mathbf{3 b} \mathbf{- a}$
and $(\overrightarrow{B E}=) \mathbf{a}+\mathbf{2} \mathbf{b}$
and $(\overrightarrow{D C}=)-\mathbf{a}-2 \mathbf{b}$
and $B C$ is equal to $D E$
and $B E$ is equal to $D C$

Additional Guidance

Choose the method that gives most marks
Ignore incorrect vectors if not contradictory
For parallel allow in the same direction or in the opposite direction
For equal to allow $=$ or the same as
Condone incorrect notation if unambiguous
eg $C B=-(b-2 a)-2 b-a$

Q4.
(a) $4 \mathbf{b}$
(b) $\quad(\overrightarrow{E D}=)^{\frac{1}{3}}(\mathbf{a}+3 \mathbf{b})$ or $(\overrightarrow{E D}=)^{\frac{1}{3}} \mathbf{a}+\mathbf{b}$
$\overrightarrow{E C}=$ their $\left({ }^{\frac{1}{3}} \mathbf{a}+\mathbf{b}\right)-{ }^{\frac{1}{3}} \mathbf{a}$
or $\overrightarrow{E C}=\mathbf{b}$

Valid justification

$$
\begin{aligned}
& \text { eg } \overrightarrow{E D}=\frac{1}{3} \boldsymbol{a}+\boldsymbol{b} \text { and } \overrightarrow{E C}=\boldsymbol{b} \\
& \text { and } \overrightarrow{A B}=4 \overrightarrow{E C} \text { (so } \overrightarrow{A B} \text { is a multiple of } \overrightarrow{E C} \text {) }
\end{aligned}
$$

Q5.
(a) Opposite sides parallel (same direction) and equal (same length) or opposite sides are equal vectors

Strand (i). Must mention that opposite sides are parallel and equal or equal vectors
(b) $\mathbf{b}-\mathbf{c}$ or $-\mathbf{c}+\mathbf{b}$
(c) $L P=\frac{1}{2} \mathbf{a}+\frac{1}{2}(\mathbf{c}-\mathbf{a})$
$L P=$ must be stated or $L P=L A+A P$
B1 for $\frac{1}{2} \boldsymbol{a}+\frac{1}{2}(\boldsymbol{c}-\boldsymbol{a})$

Alternative 1

$$
\begin{array}{r}
\frac{1}{2} \mathbf{a}+\frac{1}{2}(\mathbf{c}-\mathbf{a})=\mathbf{a}+\frac{1}{2} \mathbf{c}-\frac{1}{2} \mathbf{a} \\
\text { B1 for } \frac{1}{2} \mathbf{a}+\frac{1}{2}(\mathbf{c}-\mathbf{a})
\end{array}
$$

Alternative 2

$$
\begin{aligned}
& (L P)=-\frac{1}{2} \mathbf{a}+\mathbf{b}+(\mathbf{c}-\mathbf{b})+\frac{1}{2}(\mathbf{a}-\mathbf{c}) \\
& \quad \text { This is } \angle P=\angle O+O B+B C+C P
\end{aligned}
$$

$$
-\frac{1}{2} \mathbf{a}+\mathbf{b}+\mathbf{c}-\mathbf{b}+\frac{1}{2} \mathbf{a}-\frac{1}{2} \mathbf{c}
$$

Alternative 3

$(L P)=-\frac{1}{2} \mathbf{a}+\mathbf{c}+\frac{1}{2}(\mathbf{a}-\mathbf{c})$
This is $L P=\angle O+O C+C P$
$-\frac{1}{2} a+c+\frac{1}{2} a-\frac{1}{2} c$

Alternative 4

$O C=\mathbf{c}$ and L and P are midpoints
Using midpoint theorem. This may be expressed differently but if evidence that mid-point theorem used then award M1
$L P=\frac{1}{2} O C$
This is for accurately describing the results using the

Alternative 5

Written explanation such as
(Journey of) L to A to P is half (the journey of) O to A to C so $L P$ is half $O C$.
$B 1$ if intention seen but explanation not complete or slight error
(d) $\quad M N=\frac{1}{2} \mathbf{b}+\frac{1}{2}(\mathbf{c}-\mathbf{b})$
$L P=M N=\frac{1}{2} \mathbf{c} \ldots . . L M N P$ is a
parallelogram (as opposite sides are the same vector)
By choosing MN it is opposite LP so no need to say opposite sides but a 'conclusion' must be stated or implied

Alternative 1

$L M=-\frac{1}{2} \mathbf{a}+\frac{1}{2} \mathbf{b}$
$L M=P N=-\frac{1}{2} \mathbf{a}+\frac{1}{2} \mathbf{b} \ldots \ldots . L M N P$ is a parallelogram
(as opposite sides are the same vector).
By choosing LM and PN no need to say opposite sides but a 'conclusion' must be stated or implied

Alternative 2

LP parallel to OC and $\frac{1}{2} O C$ (midpoint theorem)

MN parallel to OC and $\quad \frac{1}{2} O C$ (midpoint theorem)
so $L M N P$ is a parallelogram as opposite sides parallel and the same length

Q6.
(a) $\overrightarrow{B C}=2 \mathbf{a}-3 \mathbf{b}$ or
$\overrightarrow{C B}=-2 \mathbf{a}+3 \mathbf{b}$ or
$\overrightarrow{A M}=\mathbf{a}$ or $\overrightarrow{M A}=-\mathbf{a}$ or
$\overrightarrow{B N}=\frac{2}{5} \overrightarrow{B C}$ or $\overrightarrow{C N}=-\frac{3}{5} \overrightarrow{B C}$

$$
\begin{gathered}
\mathbf{a}+\frac{3}{5}(-2 \mathbf{a}+3 \mathbf{b}) \\
-\mathbf{a}+3 \mathbf{b}+\frac{2}{5}(2 \mathbf{a}-3 \mathbf{b}) \\
o e
\end{gathered}
$$

$$
-\frac{1}{5} \mathbf{a}+\frac{9}{5} \mathbf{b}
$$

$$
\text { oe eg }-0.2 \mathbf{a}+1.8 \mathbf{b} \text { or } \frac{1}{5}(9 \mathbf{b}-\mathbf{a})
$$

Must collect terms
(b) $\overrightarrow{M N}$ is not a multiple of $\overrightarrow{A B}$ oe

Q7.
(a) $M N=1 / 2 x+1 / 2 y$

$$
\begin{aligned}
& \text { oe } \\
& M N=1 / 2 B C+1 / 2 C D \\
& M N=M C+C N
\end{aligned}
$$

$B D=x+y$
oe

$$
B D=B C+C D
$$

$B D$ is a multiple of $M N$
oe
(b) $2: 1$

Q8.
(a) $a+\frac{1}{2} b$
oe
$\overline{Q S}=-a+b$
or $\overline{S Q}=a-b$
oe
$\overline{Q N}=-\frac{1}{3} a+\frac{1}{3} b$
or $\overline{S N}=\frac{2}{3} a-\frac{2}{3} b$
oe
(b) $\overline{P N}=\frac{2}{3} a+\frac{1}{3} b$
or $\overline{N M}=\frac{1}{3} a+\frac{1}{6} b$
oe
A1
Valid reason
Strand (ii)
e.g. PN is a multiple of PM
$P N$ is a multiple of $N M$

$$
\begin{aligned}
& \overrightarrow{P N}=\frac{1}{3}(2 a+b) \text { and } \overrightarrow{P M}=\frac{1}{2}(2 a+b) \\
& \overrightarrow{P N}=\frac{2}{3}\left(a+\frac{1}{2} b\right) \text { and } \frac{2}{3} \overline{P M}
\end{aligned}
$$

Q9.
(a) $5 a+3 b+6 a-7 b$
$11 a-4 b$
(b) 22
ft their $11 \times 8 \div$ their 4 Accept 22a (-8b)

